Utilization of Magnesium Hydroxide Produced by Magnesia Hydration as Fire Retardant for Nylon 6-6,6

نویسندگان

  • Sônia D.F. Rocha
  • Sônia D. F. Rocha
چکیده

The present work investigates the use of magnesium hydroxide, produced by magnesia hydration, as a fire retardant in polymers. The hydration was carried out in an autoclave, at temperature of 130°C for 1 hour, and the product was further submitted to cominution in a jet mill. The solids were characterized with regard to their chemical composition, particle size distribution, surface area and morphology. The performance evaluation of the hydroxide as a flame retardant for a copolymer of nylon 6-6,6 was carried out according to the UL94 specifications for vertical burning tests. V-0 flammability rating at 1.6 mm (60% magnesium hydroxide-filled nylon composite) and at 3.2 mm (40% magnesium hydroxide filled nylon composite) were achieved. Mechanical properties were maintained at the desired values. These results indicate that the hydroxide obtained from magnesia hydration can be successfully employed as a fire retardant for nylon 6-6,6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combine flake like magnesium hydroxide and cubic like aluminum hydroxide nanostructures in order to improve fire retardant of PVC and PMMA

In this study, Flake-like magnesium hydroxide (Mg(OH)2) and cubic-like aluminum hydroxide (Al(OH)3) nanostructures were synthesized via a simple co-precipitation method at relatively low temperature. Chemical properties and surface morphology of the magnesium hydroxide and aluminum hydroxide were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy image (SEM), transm...

متن کامل

A Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite

Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform in...

متن کامل

IMPROVING HYDRATION RESISTANCE OF MAGNESIA-DOLOMA REFRACTORIES BYIRON OXIDE ADDITION

Abstract: There have been lots of studies to control the poor hydration resistance of dolomite refractories one of themost effective solutions has been the addition of magnesia to doloma. Using a co-clinker of magnesia-doloma as astarting material would provide more homogeneity in the properties of the product and has been published recently.On the other hand, addition of iron oxide to doloma h...

متن کامل

Preparation and properties of superfine Mg(OH)2 flame retardant

Preparation of superfine magnesium hydroxide with the bittern and ammonia was studied. The properties of the products were analyzed by laser granularity, X-ray diffraction, scanning electron microscope, the limiting oxygen index and the wet t ing angle measurements . The results show that the mean particle size of the magnesium hydroxide is about 230 nm with a platelet shape and the specific su...

متن کامل

Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001